
[Bhattad, 4(3): March, 2015] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [763]

IJESRT
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH

TECHNOLOGY

STUDY OF DEFECT, ERRORS AND TESTING CHALLENGES IN WEBSITE USING

MANUAL AND AUTOMATION TESTING TECHNIQUES
 Bharti Bhattad*, Prof. Abhay kothari

* Acropolis institute of technology and research Dewas Bypass Road, Indore, India

Acropolis Institute of Technology and research Dewas Bypass Road, Indore, India

ABSTRACT
Testing is a quality assurance of the application development; therefore it is must essential for new products. In this

paper a software quality scheme is introduced for web based application testing. The proposed testing framework

includes the stress testing, load testing, performance testing, and unit testing of the web projects. The proposed testing

tool is a set of testing methods by which a web application tested on different performance parameters. Additionally

the implementation of the proposed technique is also reported using visual studio environment. The performance of

the reported system is estimated in terms of server response time in terms of time and number of users. Also calculate

the time and space complexity respectively. It found the adoptable and efficient testing support for the intermediate

module testing of web applications.

KEYWORDS: software testing, web application testing, unit testing, stress testing, server response time .

 INTRODUCTION
We can evaluate Quality Assurance of any

product by testing. Thus for a quality of product

development needs an appropriate testing

strategies. In this study web, application tested

in order to producing an efficient and error free

web application. Now in these days the world

becomes more competitive additionally service

oriented business are growing rapidly, in order

to provide the continuous services to the end

clients. Advance and new technologies

employed for customer reliability and

satisfaction. This may become more open and

convenient with online communication,

shopping, banking and other applications.

Therefore, most of the real life works becomes

online services, which provide the 24X7

connectivity with clients. For that, purpose a

good quality of application is desired which

provide the services continuously during

different conditions. Software engineering

provides techniques for application

development and design with quality

assurance. The testing of applications performs

the measurement of quality in software

engineering. Therefore testing is a crucial and

essential for the good quality application

development.

In this thesis work, testing techniques and their

strategies are discuss and investigated. More

specifically automated web based software-

testing techniques for finding the efficient and

supportive technique for application

development and deployment. Therefore, a

detailed study on web application architecture

and their development and deployment

environment is studied. In addition, of that, a

new web application-testing tool proposed for

implementation. The proposed web

application-testing tool incorporates different

modules and methodologies for producing the

enhanced and quality web application.

This section provides a general overview of the

presented testing tool, the key goals and

objectives of the presented work to be

discussing in further sections.

BACKGROUND
Software testing can be understands as the

process of validating and verifying that a

software program/application/product [1]:

1. Meet the requirements that guided its

design and development;

2. Works as expected;

http://www.ijesrt.com/

[Bhattad, 4(3): March, 2015] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [764]

Can be implement with the same

characteristics. In a more traditional software

development model, most of the test execution

occurs after the requirements have been refined

and the coding process has been completed [2].

Each aspect described in the previous list

produces new testing challenges and

perspectives. For example, access concurrently

by a large number of users. Moreover, as users

may utilises browsers with different Web

content rendering capabilities [3], Web

applications must be test to make sure that the

expected application’s behaviour using

different Web browsers, operating systems, and

middle ware is the one expected. As for the

existence of dynamically generated software

components, the issue here is to cope with the

difficulty of generating and rerunning the same

conditions that produced each component [4].

The remainder of this chapter uses the term

Web application (or simply application) to

indicate the set of software components

implementing the functionality and services the

application provides to its users, while the term

running environment will indicate the whole

infrastructure (composed of hardware, software

and middle ware components)needed to

execute a Web application [5]. The main goal

of testing a Web application is to run the

application using combinations of input and

state to discover failures. A failure is the

manifested inability of a system or component

to perform a required function within specified

performance requirements [6]. Since a Web

application is strictly inter woven to its running

environment, it is not possible to test it

separately to find out exactly what component

is responsible for each exhibited failure.

Therefore, different types of testing have to be

executes to uncover these diverse types of

failures [7]. Thus, Web application testing will

be judge from two distinct perspectives.

One perspective identifies the different types of

testing that need to be executing to verify the

conformance of a Web application with

specified non-functional requirements.

The other perspective considers the problem of

testing the functional requirements of an

application. It is necessary that an application

be testing from both perspectives, since they

are complementary and not mutually exclusive

[8]. Usually, performance testing is executing

by simulating thousands, or even more, parallel

user accesses over a defined time interval [9].

As for the difficulties of executing load testing

of Web applications, considerations similar to

the ones made for performance testing can also

be taking into account. Failures found in load

testing are mainly due to faults in the running

environment [10]. In the case of Web

applications, stress-testing problems are similar

to those that can be meeting in performance and

load testing [11].

Usability is a critical issue for a Web

application. Indeed, it may determine the

success of the application [6]. The application

is mainly responsible for usability failures.

Accessibility testing is considered as a

particular type of usability testing, whose aim

is to verify the access to an application’s

content is allowed even in the presence of

reduced hardware and software configurations

on the client side (e.g. browser configurations

disabling graphical visualisation, or scripting

execution) [12], or in the presence of users with

disabilities, such as visual impairment.

In the case of Web applications, accessibility

rules such as the one provided by the Web

Content Accessibility Guidelines [13]

established, so that accessibility testing

represents verification the compliance of an

application with such rules.

Buchler et al [14] present SPaCiTE. This tool

relies on a dedicated model-checker for

security analyses that generates potential

attacks with regard to common vulnerabilities

in web applications. Yongpo Liu et al [15]

present the design of generic codec for testing

Web application.

Jason Bauet al [16] used a custom web

application vulnerable to known and projected

http://www.ijesrt.com/

[Bhattad, 4(3): March, 2015] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [765]

vulnerabilities, and previous editions of widely

used web applications containing known

vulnerabilities.

Shauvik Roy Choudhary et al [17] presents X-

PERT a tool for identifying XBIs in web

applications automatically, without requiring

any effort from the developer, X-PERT

implements a comprehensive technique for

identifying XBIs and has been shown to be

effective in detecting real-world XBIs in

empirical evaluation of the software. The

source/object code of X-PERT and XBI reports

from evaluation are available at link

http://gatech.github.io/xpert

Nadia Alshahwan et al [18] introduced three

related algorithms and a tool, SWAT, for

automated web application testing using Search

Based Software Testing (SBST). Maurizio

Leotta et al [19] present an industrial case study

about test automation and test suite

maintenance in the context of Web

applications.

Fathy E. Eassa et al [20] an integrated multi-

agent testing tool presented. Such tool

comprises static analyser, dynamic tester and

an integrator of the two components for

detecting security vulnerabilities and errors in

agent based web applications written in Java.

Ali Mesbah et al [21] propose a method for

testing AJAX applications automatically, based

on a crawler to infer/use a state-flow graph for

all (client-side) user interface states. We

describe somehow three case studies,

including six subjects, evaluating the type of

invariants that can be obtained for AJAX

applications as well as these fault revealing

capabilities, scalability, required manual effort,

and level of automation of given testing

approach [22].

PROPOSED WORK
The proposed work intended to find a best

testing strategy for web based application

testing. Now in these days the traditional

desktop applications are becomes online-based

systems. Therefore, web application

development is in on high demand. On the

other hand, these applications are using to store

sensitive and important data therefore the

security and other issues are also involve in this

domain. In addition of that the application

development and their internal architecture is

different from the traditional desktop-based

application development. Thus, a different kind

of strategy is required to test a web application.

The testing of a web based application need the

following objective to test with any complete

web application-testing tool.

In order to implement the desired concept to

test and support application development and

deployment of web based software products a

modular architecture suggested using the figure

3.1.

Figure 3.1: Proposed Testing Model

The proposed system is accepts two different

input for perform testing on the web based

application. All the system designed in

modules and component basis; therefore, all the

sub components and modules are discusses

here in detail.

Source Code

The testing tool accepts the source code

repository for finding bugs and error in the

existing code. The web-based system contains

more than one type of source code, such as java

script, CSS and ASP.net source code files. For

testing of java scripts and CSS files not any

useful resources are available therefore only

http://www.ijesrt.com/

[Bhattad, 4(3): March, 2015] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [766]

ASP.net source code files are tested for the

their bugs and errors.

Source Code Parsing

In this, module the input source code parsed

first, which categorize the available source

code for classes, methods, functions and their

participating variables. In this step, the source

code files separated and remaining support

documents filtered. The filtered server side

codes tested in next phase.

Unit testing and Error Discovery

In this phase, the ASP.NET source code files

tested for their functions using randomly

generated inputs. In this phase, a third party

API used to produce and generate values for

function. The resultant bugs and errors listed in

this phase. On the other hand, the application

tested using the deployment URL.

Error Reporting

The evaluation results of the Unit testing are

giving in this part of the system.

Deployment URL

The application deployed in remote host or

server machine, and for accessing the

application, using client browser a domain

name is associated with this deployed server. In

addition, client access the documents and

application modules using this domain name

and using the path. This path or URL produced

as input to the system for other kind of testing.

Browser Selection

Using the deployed URL the application is

testing for their compatibility with the different

web browsers, such as Fire-Fox from Mozilla,

internet explorer, Chrome from Google, Opera

and many more.

User Feedback

In this phase, the user feedback for

compatibility issues and their performance is

evaluated using users feedback. The input user

feedback collected in terms of rating values

between 0-10.

Input Time for Test

The performance of the web application tested

for 24-hour performance therefore for

evaluating the performance of web application

the load on server at different time is required

to evaluate. In addition, this will results the

different time based responses of the server.

Increase Number of Users

On the other hand, the numbers of users are

increases to find the performance of web

application during increasing concurrent users

to the system.

Load Testing Results

In this phase, the outcome of the system

concluded and demonstrated using suitable

performance parameters.

This phase discussed about the different testing

modules incorporated with the system, in next

section the summary of the chapter presented.

RESULTS ANALYSIS

The proposed testing tool is a set of testing

methods by which a web application tested on

different performance parameters. With the

system, experimentation and different

conditions during testing different outcomes

evaluated and listed in this section.

Time Complexity

Time complexity also known as time

consumption that estimated using the time

difference between initialization of code

processing and the finalizing of testing. In this

context, the total time required to perform the

test over web application’s code files is termed

as time complexity.

http://www.ijesrt.com/

[Bhattad, 4(3): March, 2015] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [767]

Figure 5.1 Unit testing results

Figure 5.1 shows the unit testing performance

of proposed web application testing tool. In this

diagram, the X-axis shows the amount of code

files for testing and Y-axis shows the time

consumed during testing. The web application

consists of various other scripts and supporting

files are included. Thus, these files are not

included during the testing results

demonstration. According to results, the

amount of time required to test the code files.

There are two facts found:

1. More number of code files leads more

time consumption

2. If number of code lines in a code is

larger than the amount of time

required to test the application is also

increases in the same manner.

Space Complexity

The amount of main memory required to test an

application is termed here as time complexity

of the system. Time complexities of the testing

tools are considering in two different parts.

First memory consumption during the load

testing that is demonstrated using figure 5.2 and

memory consumption during code testing

which is demonstrated using figure 5.3.

Figure 5.2 shows the space complexity during

the load testing, during load, testing the client

machine main memory consumption estimated

and during each experiment 5 numbers of users

are increased. During this testing environment,

the estimated results are given using figure 5.2.

According to the evaluated results as the

number of users increase, the memory

consumption of the testing tool is increases in

the similar manner. In this diagram, the amount

of main memory given using Y-axis and the X-

axis shows the number of experiments.

Figure 5.3: Space Complexities during Code

Testing

The figure 5.3 shows the performance of

system during code testing, in this context the

amount of main memory consumed tested

during increasing number of code files to test.

Therefore, the amount of code files are

represented using X-axis and the Y-axis

demonstrates the amount of main memory

consumed in terms of kilobytes. According to

the obtained results the as the number of code

files for testing is increases the amount of main

memory consumption is increases in respective

manner.

Response Time

The amount of time required to generate

response by the remote host for a given request

known as the server response time. During

number of users in the system increases, the

testing of server response time collected for 20

minutes and average response time of the

server is calculated and demonstrated using

figure 5.4. In this diagram, the X-axis shows

the number of users in system and the Y-axis

shows the amount of time consumed for

providing the response to the end client.

According to the results as the number of user,

increases in a host the amount of time

consumption are increases in the same manner.

http://www.ijesrt.com/

[Bhattad, 4(3): March, 2015] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [768]

Figure 5.4: Server Response Time

ERROR DETECTION RATE
The amount of error detected during different

experimentation with the source codes is

termed as error detection rate. The estimated

number of errors during different experiments

is listed using figure 5.5. In this diagram, the

amount of error detected given in Y-axis and

the X-axis demonstrates the number of

experiments performed with the system.

According to the obtained results the amount of

error detection is not depends upon the number

of code files that is directly depends upon the

source code and their development and

deployment environment.

Figure 5.5 Error Detection Rate

CONCLUSION AND FUTURE WORK
The given section draws the conclusion of

performed study, therefore during the

development of web testing tool and during

experimentation with system, essential facts

are listed here. In addition, of that, the

limitations and future extension are also listing

in this section. The main objective of the online

applications is to provide user specific services

in 24X7 manners. There are various

applications such as shopping web; banking

and other CMS applications are available

online. In order to provide continuous service

to the end client, quality applications are

required to develop. Therefore, in this work, a

web application-testing tool is developed and

designed. The proposed testing model

incorporates different testing mechanism for

delivering the quality product during different

deployment phases.

The main features of the developed tool are

web application functional testing,

computability analysis with web browsers

during deployment of the application. In

addition, of that, during development using unit

testing the application provides support to

developer for enhancing the application

functions and classes. The implementation of

the proposed testing tool performed using

visual studio environment. The facts of

performance can be discussing as:

1. Time complexity of the system is low,

but as the number of code file under

evaluation is increased the amount of

time, required compiling and test

functions increased with the ratio of

number of code files and line of codes.

2. Space complexity of the system is

low, that is not depends upon the

number of code file input. That is

directly proportional to the amount of

code line required to compile.

3. Response time of the web applications

is increases as the load on server is

increases, therefore more the number

of concurrent users causes the similar

amount of load. On the other hand, if

the amount of response time increases

than, it will not affect much on the

server load.

4. Error detection rate is not depends

upon the files or the code lines. It is

http://www.ijesrt.com/

[Bhattad, 4(3): March, 2015] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [769]

directly depends on the deployment

environment and incorrectly defined

code blocks.

In near future required to perform more

research on different code environments and

script validation methodologies. For extending

the proposed testing tool for different other

programming languages.

REFERENCES
1. N. Alshahwan and M. Harman, “Automated

Web Application Testing Using SearchBased

Software Engineering”, 26th IEEE/ACM

International Conference on Automated

Software Engineering (ASE), 2011.

2. F. E. Eassa, M. Zaki, A. M. Eassa and T.

Aljehani, “IMATT: An Integrated Multi-

Agent Testing Tool for the Security of Agent-

Based Web Applications”, World Journal of

Computer Application and Technology vol 1,

no 2, pp. 19-28, 2013.

3. A. R. Arunachalam, “Innovative Approach of

Testing in Event Driven Software (EDS)”,

Indian Journal of Science and Technology,

vol 7, no s5, pp. 37–40, June 2014.

4. A. Mesbah, A. Deursen and D. Roes,

“Invariant-Based Automatic Testing of

Modern Web Applications”, IEEE

Transactions on software engineering, vol. X,

no. Y, 2011.

5. S. Elbaum, G. Rothermel, S. Karre, and M.

Fisher, “Leveraging User-Session Data to

Support Web Application Testing”, IEEE

Transactions on software engineering, vol.

31, no. 3, March 2005.

6. J. T. Yang, J. L. Huang, F. J. Wang, and

William. C. Chu, “An Object Oriented

Architecture Supporting Web Application

Testing”, 0-7695-0368-3/99 $10.00 0 1999

EEE.

7. A. Arora and M. Sinha, “Web Application

Testing: A Review on Techniques, Tools and

State of Art”, International Journal of

Scientific & Engineering Research, vol. 3,

no. 2, ISSN 2229-5518, February-2012.

8. V. Dallmeier, M. Burger, T. Orth and A.

Zeller, “Web Mate: A Tool for Testing Web

2.0 Applications”, JSTools’12, Beijing,

China, Copyright 2012 ACM 978-1-4503-

1274-5/12/06, June 13, 2012.

9. Dr. R. Kumar P., and K. Bhargav, “A Survey

on Performance Testing Approaches of Web

Application and Importance of WAN

Simulation in Performance Testing”,

International Journal on Computer Science

and Engineering (IJCSE), vol. 4, no. 05, May

2012.

10. J. Gao, X. Bai, and W. T. Tsai, “Cloud

Testing- Issues, Challenges, Needs and

Practice”, Software Engineering: An

International Journal (SEIJ), vol. 1, no. 1,

September 2011.

11. H. J. Kam and J. J. Pauli, “Work in Progress

- Web Penetration Testing: Effectiveness of

Student Learning in Web Application

Security”, 978-1-61284-469-5/11/$26.00

©2011 IEEE.

12. N. Alshahwan, “Utilizing Output in Web

Application Server-Side Testing”,

Department of Computer Science University

College London, August 19, 2012.

13. J. Offutt, V. Papadimitriou, and U.

Praphamontripong, “A Case Study on Bypass

Testing of Web Applications”, Accepted for

publication, Empirical Software Engineering

journal, 20-June-2012.

14. J. Conallen, “Building Web Applications

with UML: Web Application Basics”,

available at

http://www.informit.com/articles/article.asp

x?p=30610 , Jan 17, 2003.

15. Available at

http://www.pearsonhighered.com/samplecha

pter/0201730383.pdf

16. M. Leotta, D. Clerissi, F. Ricca and C.

Spadaro, “Repairing Selenium Test Cases:

http://www.ijesrt.com/
http://www.pearsonhighered.com/samplechapter/0201730383.pdf
http://www.pearsonhighered.com/samplechapter/0201730383.pdf

[Bhattad, 4(3): March, 2015] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [770]

An Industrial Case Study about Web Page

Element Localization”, © 2013 IEEE.

17. Y. Zou, C. Fang, Z. Chen, X. Zhang and Z.

Zhao, “A Hybrid Coverage Criterion for

Dynamic Web Testing”, at

http://software.nju.edu.cn/zychen/paper/201

3SEKEa.pdf

18. S. Bucur, J. Kinder and G. Cande, “Making

Automated Testing of Cloud Applications an

Integral Component of PaaS”, fourth Asia-

Pacific Workshop on Systems (APSYS),

Singapore, July 2013.

19. Z. Qian, “Towards Testing Web Applications

Using Functional Components”, Journals of

software, vol. 6, no. 4, April 2011

20. F. Lazarinis, S. Green and E. Pearson,

“Creating personalized assessments based on

learner knowledge and objectives in a

hypermedia Web testing application”, 0360-

1315/$, 2010

21. A. S. Brar and A. Jalota, “Implementation of

an optimal approach to testing web based

applications”, Asian Journal Of Computer

Science And Information Technology vol 3,

no 2 , pp. 26 – 28, 2013

22. Available at

http://www.w3schools.com/ajax/ajax_intro.a

sp.

http://www.ijesrt.com/
http://www.w3schools.com/ajax/ajax_intro.asp
http://www.w3schools.com/ajax/ajax_intro.asp

